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ABSTRACT 

We derive an expression for the Cramer-Rao lower bound 
(CRB) on the covariance of unbiased estimators of a con- 
strained complex parameter vcctor and demonstratc kcy ap- 
plications of thc theory. In the first part, motivated by the re- 
sult i n  [ I ]  we introduce an important extension to the set of 
constraints on the complex parameters. This extension then 
leads to a simple exprcssion for the complcx constrained 
CRB similar to thc result in  [2 ] .  This CRB framework is 
employed in the context of cstimation of a wirelcss chan- 
nel malrix H .  We demonstrate that the channcl estimation 
error lower bound is directly proportional to the number of 
unconstrained parameters in  H .  The usefulness of these i-c- 
sults is illustrated by their application to two different esti- 
mation problems arising in wireless communications. The 
first is whitening-rotation based semi-blind MIMO channel 
cstiniation arid thc second pertains to time versus frequency 
domain channcl cstjniation in  OFDM systems. 

1. 1NTRODUCTION 

The CRB serves as an important tool in thc performance 
evaluation ol'estimators which arise frequently in the fields 
of communications and signal processing. Most problems 
involving the CRB are formulated in tcrms of unconstrained 
real parameters 131. Two useful dcvclopments of the CRB 
theory h a w  been prescnted in later rescarch. The first be- 
ing a CRB formulation for unconstrained complex param- 
eters given in [ I ] .  A second result is the development of 
the CRB theory for constrained real parameters [ 2 ] .  How- 
ever, i n  applications such as semi-blind channel estimation 
one is faced with the estimation of constrained complex pa- 
rameters. Using the calculus of complex derivatives as is 
often done in  signal processing applications, considerable 
insight and simplicity can be achieved by working with the 
complex vector parameter as a single entity [3,4]. We thus 
present an extension of the result in [2] for the case of con- 
strained complex parameters. Its application is illustrated 
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in the context of semi-blind channel estimation and also to 
OFDM hased communication systems. 

2. CRB FOR COMPLEX PARAMETERS WlTH 
CONSTRAINTS 

Consider the complex parameter vector 7 E C n x l .  Let 7 4 
d -t j $  such that the real and imaginary parameter vectors 
i?i,p E Wnxl and [ [LUT,PTlr. Assume that the likeli- 
hood function of the (possibly complex) observation vector 
W E fi parameterized by f i s  s(W; [). Let c: R + R2'Lx' 

be given as ( 6' , PT , where d, are unbiased esti- 

mators of f i ,  rcspectively. In  thc foregoing analysis, we 

define the gradicnt - E W' xn of a scalar function r (a)  

as a row vector: 

Let e E 

* [ * ' >  I T  
&(a) 

dii  
d r ( d )  A d r j d )  dr(c?.) dr(6) 

- [ dol , dC*2 , . . . , z] . 
be defined as in [ I ]  by 8 a bT, y H I T .  

Suppose now that the E compkx constraints on 0 are given 
as 

h (q = 0, (1) 

i.e. h (q E Cl''. Wcthenconstruct anextendedconstraint 
set (of possibly redundant constraints) f (s) E C2Ix1 as 

f (9 [ ;*?A ] = 0. 

An important observation from ( 2 )  above is that symmet- 
ric complex constraints on these parameters are treated as 
disjoint. For instance, given the orthogonality of complex 
parameter vectors j j l , G 2 ,  i.e. *#f'j~ = 0, the symmetric 
constraint qyfj1 = 0 is to bc trcated as an additional com- 
plex constraint and hence f(6) = [ f j { ' ~ ~ , * @ f j ~ ]  . The 
extension of the constraints is akin to the extension of the 
parameter set from 7 to 8 = [ T T ,  7"] called for when 
dealing with complex parameters. Let F (q 9 and 
rank ( F  (q) = k < 2n. HencethereexistsaU E @ 2 n x 2 n p i i  

such that U forms an orthonormal basis for the nullspace of 

7' 

397 

mailto:ucsd.edu


F(g)  i.e. F(8)U = 0. Let p ( 3 ;  8) be the reparametenzed 
likeIihood s(W; 5, p) of the observed data and define A as 

F(+ 

where the last equation follows from the definition o f p ( w ;  e). 
Let J = E {A*AT> denote the Fisher information matrix 
(FIM) for lhe unconstrained estimation of 8. Also assume 
that 

- 
qH 0 0 ... sT 0 0 . . .  
0 q? 0 . . .  q;' 0 0 . . .  

qy 0 0 ... 0 0 q: ... 
0 0 qp . . .  $ 0 0 . . .  

0 . . .  0 0 r . .  

0 q2H q, O f f  0 ... 0 qs qb -... 

A. I : The real parameter vector F satisfies the desired regu- 
larity conditions as in [2] 

Wc now state th? result for the CRB of the constrained 
complex estimator S. 
Theorem 1. Under assumption A. I and corrstmints given 
by ( I ) ,  the CRB f o r  esriniation of lhe constrained parameter 
e E C2nx is ther2 giweri us 

E{(= 8 - 8  0-6' - ) H }  ? U(UH.JU)- 'U".  (4) 

ProoJ A proof of the above result can he found in [5].  

3. SEMI-BLIND MIMO CHANNEL ESTIMATION 

3.1. Problem Formutation 

We consider in  this section the problem of pilot assisted 
semi-blind estimation of a complex MIMO channel matrix 
H E C r x f  (# receive antennas = T,# transmit antennas = t ) .  
Let a total of L pilot symbols be transmitted. The channel 
input-output relation is represented as 

Y ~ = H x ~ + v ~  , k ~ 1 , 2 ~ . . . ~ L ~  (5 )  

where y k  E C r x l ,  xk E Ctxl are the reccived and trans- 
mitted signal vectors at the k-th time instant. v k  E C r x l  
is spatio-temporally uncorrelated Gaussian noise such that 
E {vkvr) = u21. The rcceivcd symbol vectors can be 
stackcd as pp [Y1,y2,. . . ,?L]. Let X, he defined anal- 
ogously by stacking the transmitted symbol vectors. The 
next rcsult then relates the estimation accuracy of H to the 
number of un-constrained parameters in it. 

Theorem 2. Under conditiotu described above. if the pilot 
segiierice X, is orthogonal i.e. X p X F  = u:L I, the nrini- 
miinz estiriiatiorr error i r i  H is directly proportioiiul to A the 
riuniber of un-constmiried purnnieters required to describe 
H arid in fact, 

ProoJ A proof of the above result can be found in 161. 
A general complex channel matrix H has R H  = 2rt 

paramerecs.However, H can be factorized using its singular 
value decomposition (SVD) as H = PCQH where P E 
C r x t ,  Q E Ctxt  is unitary such that Q H Q  = QQH = I, 
E = diag (glru2,. . . , L T ~ ) ,  0% > 0. P, C can be estimated 
using blind techniques. We then employ the pilot data ex- 
clusively to estimate the constrained orthogonal matrix Q 
which has AQ = t2  parameters. The semi-blind estimate 
of H is then given as I? = PCQH. More about the sig- 
nificance of such an estimation scheme can be found in  [7j. 
Hence by an application of theorem(2), the ratio of the esti- 
mation error bounds of the semi-blind technique which esti- 
mates a constrained matrix Q, to a training based technique 
that estimates the un-constrained H matrix is given as 

A H  

AQ 
B = 10loglo (-) dB = 10 log,, (:) dB. (7) 

The above expression holds with equality when the CRB 
is achievable. Thus, for a size 8 x 4 channel matrix, = 
6 dB which implies a significant improvement in  estimation 
accuracy. 

q 1  0 9 7  0 q3 ... 
0 q1 0 q 2  0 ... 
0 0 0 0 0 ... 

-q; -q; 0 0 0 f . .  

0 0 -q; q; 0 . . .  
0 0 0 0 -q; r . .  
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The simplistic and insightful nature of the above matrices 
in terms of the orthogonal parameter vectors is particularly 
appealing and iIlustrates the efficacy of using the complex 
CRB. From Eq(8) and using the results for least-squares es- 
timation 131 the Fisher information matrix J (83 E @2t3 x 2 t 2  

for the unconstrained case is given by the block diagonal 
matrix 

(9) 
1 

J (e) = -12x2  63 c2 @ xpx,”. 
CT: 

The complex constrained CRB for the parameter vector s is 
then obtained by substituting these matrices in (4). For an 
orthonormal pilot sequence X, (i.e. XpX,” = h; I )  the 
CRB matrix for Q (and hence that of I?) can be explicitly 
written and the lower bound for the variance in the estimate 
of the k, 1-th element of H is shown i n  [6] to be given as 

where Pk, ,Ql ,  are the k,i-th and 1,j-th elements of P, Q 
respectivcly. 

3.3. ML Estimation of Q 

Q, the ML estimate of Q, is given as a solution to the cost 
function 

2 - H  4 = argrniii IIYp - XFQCl/  suhject to QQH = I, 

where thc nom Il.l\ i s  the mat+ Frohcnius norm+ From 17, 
8,9] ,  the  consmined estimate Q employing an orthonormal 
pilot sequence X,, i.e. X ~ X :  = D:L r, is given as 

Q = PpR,” whcre P,C,R; = svd X p Y p  C , 

Q 
( 1  1 )  

(12) ( - ” I  
and fish the semi-blind estimate o f H  is given as 

ksh = P C o H .  ( 1 3  

Dcnoting by X; the Moore-Penrose pseudo-inverse of X, , 
the exclusive training based ML estimate of H is given as 

i l h  = Y,X& (14) 

3.4. Simulation Results 

Our simulation set-up consists of an 8 x 4 MIMO channel 
H .  Thc source symbol vectors x E are assumed to be 
drawn from a B P S K  constellation and the orthonormality 
condition is achieved by using the Hadamard structure. Thc 
transmitted pilot was assumed to be of length L = 12 sym- 
bols. Fig. 1 .  shows the total MSE in estimation of H using 
the semi-blind estimate in (13) and the exclusive training 

1 O0 
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Fig. 1. Computed MSE Vs SNR. H - H l l ^  112. 
based least squares estimate givcn in (14). Also shown is the 
CRB of the semi-blind estimate computed from (IO).  The 
semi-blind ML estimate H s b  can be seen to achicvc a per- 
formance closc to thc CRB and i t  is also seen to bc (D =)G 
dB morc efficient than thc exclusive training based estimate 
H t ,  as can be inferred from (7). 

4. OFDM CHANNEL ESTIMATION 

Wc dcmonstratc another application of constrained estima- 
tion by considcring a prohlem that arises in the context of 
channel estimation i n  Orthogonal frequency division multi- 
plexing (OFDM) communication systems. The problem of 
time vs frequency domain channel estimation for an OFDM 
bascd communication systcm has been detailed in [ IO,  1 I ] .  
It has been shown there in that when the number of subcarri- 
ers K exceeds the numbers of taps L i n  the channel impulse 
responsc (CIR), thc time domain least squares channel es- 
timate (TLSE) is more accurate than the frequency doniain 
least squares estimate (FLSE). Indeed, we demonstrate be- 
low that this result follows as an immediate consequence of 
the complex constrained CRB theory developed above. 

4.1. Problem Description 

Employing notation in [ IO] ,  let thc complex baseband chan- 
nel from the transmitter to the receiver be modelled by a 
tapped delay line as 
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where L is the number of taps in the channel and is known. 
Let K denote the number of subcarriers and p 2 [no, all . . . , 
~ K - I ]  he the pilot signal known at the receiver. Denot- 
ing the discrete time CIR as h = [bo, h i ,  , , . , h ~ - l ]  , the 
cyclic-prefix extended OFDM communication system can 
be modeled as 

r = a h + n  (14) 

where r ,n  E C K x l  are the received symbol vector and 
additive white Gaussian noise respectively. The matrix a E 
C K x  is constructed from the pilot symbols as 

T 

T 

1 z; aK-1  aK--2 ... Q K - L + l  

a0 UK-1 ' - I  aK-L+2  

A, the LS estimate of 11 is givcn as 

iz = (."a)-' U H T .  (18) 

The frequency domain equivalent of the system in  (16) can 
bc obtained by computing the D l T  of both sides as 

R=Fr=Fah+Fn,  (19) 

where F E C" is given as 

woo . . . WO( K -  1 ) 

w ( IC- 1) ( K -  1) 

F = [ ; . _ .  
... w( IC- I )U 

and Wil A e-j y. The system in (1  9) is then given as 

R = AH -t- W, (21) 

where A Fn and H 45 Fh 
where F is the left I(: x L sub-matrix of E The uncon- 
strained lcast squares estimate H ,  which is also thc FLSE, 
is therefore given as 

d, iay(Fp)  E C K x K ,  N 

H I  = (AHA)- '  AHR. (22) 

However, the parameter vector H is a constrained parame- 
ter vector and in fact, the constraints on H are given as 

- 
f (H) FHH = 0 (23) 

- 
where F is the right K x ( K  - L )  sub-matrix of F .  There- 
fore, from (23), i t  can be seen that the number of constraints 
on H is K - L. Hence, even though H contains K com- 
plex parameters (21C real parameters), it only contains L 

(< K )  un-constrained complex parameters (2L real param- 
eters) and these un-constrained parameters are in fact the 
elements of the parameter vector h. H is given as a func- 
tion of its un-constrained parameters as H = ph. Thus, an 
alternative constrained technique to estimate H, based on 
the estimate in ( I  8) is given as, 

which is also the TLSE of H. Assuming a constant power 
spectrum as in [IO], A"A = I. Hence, the pilot orthogo- 
nality requirement of theorem 2 is satisfied and in fact, the 
CRB is exactly achievable since the estimation problem in 
this case involves a linear least squares cost function and the 
noise is Gaussian [3]. Therefore, from theorem 2, the ratio 
of the estimation error of the FLSE in (22) to the estimation 
error in  the TLSE in (24) is precisely given by the ratio of 
the number of paramcters to the number of un-constrained 
parameters as 

as reported in [IO], where the above conclusion was reached 
after an explicit computation of the covariance matrices of 
the time domain and frequency domain estimation schemes. 
Thus, the constrained parameter framework and particularly 
theorem 2 provides a powerful framework, where results 
such as the one in (25) can be deduced by just reckoning 
the number of un-constrained parameters, thus avoiding ex- 
plicit computation of thc error covariance matrices. 

4.2, Simulation results 

Our simulation setup consisted of an OFDM syslcm with 
K = 40 subcarricrs and L = 5 taps. The channel h was 
generated as a complex Gaussian vector of zero mean inde- 
pendent entries and with the variance of real and imaginary 
parts equal to 0.5. Thc time domain and frequency domain 
channel estimates were found U given in  (24) and (22)  re- 
spectively. The experiment was repeated for 1000 iterations 
at different SNRs in  the  range 2 ~ 14 d3. The mean estima- 
tion error vs SNR is given in Fig.2. It can be seen the the 
time domain estimate is more accurate than the frequency 
domain estimate. Also, the ratio of the estimation error of 
the FLSE to TLSE is precisely 10 loglo (F) = 6dB.. 

5, CONCLUSIONS 

An expression for the Cramer-Rao lower bound on the co- 
variance of unbiased estimators of a constrained complex 
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OFDM - Channd Estimatiar. K = 40. L = 5 
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Fig. 2. Constrained Vs. unconstraincd channel estimation 
ror OFDM, 

parameter vector has been presented. Employing this re- 
sult, we have demonstrated that lhc channel estimation er- 
ror lower bound is directly proportional to the number of 
unconstrained parameters in H ,  the channel matrix. The 
applicability of this framework is shown in the context of 
two different wireless channel estimation problems. The 
first scenario is whitening-rotation based semi-blind MlMO 
channel estimation and thc second pertains to time versus 
frequency domain channel estimation i n  OFDM systems. 
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