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ABSTRACT

We derive an expression for the Cramer-Rao lower bound
(CRB} on the covariance of unbiased estimators of a con-
strained complex parameter vector and demonstrate key ap-
plications of the theory. In the first part, motivated by the re-
sult in [1] we introduce an important extension to the set of
constraints on the complex parameters. This extension then
leads to a simple expression for the complex constrained
CRB similar to the result in [2]. This CRB framework is
employed in the context of estimation of a wireless chan-
nel matrix . We demonstrate that the channel estimation
error lower bound is directly proportional to the number of
unconstrained parameters in H, The usefulness of these re-
sults is illustrated by their application to two different esti-
mation problems arising in wireless communications. The
first is whitening-rotation based semi-blind MIMO channe!
estimation and the second pertains to time versus frequency
domain channel estintation in OFDM systems.

1. INTRODUCTION

The CRB serves as an important tool in the performance
evaluation of estimators which arise frequently in the fields
of communications and signal processing. Most problems
involving the CRB are formulated in terms of unconstrained
real parameters [3]. Two useful developments of the CRB
theory have been prescnted in later rescarch. The first be-
ing a CRB formulation for unconstrained complex param-
eters given in [1]. A second result is the development of
the CRB theory for constrained rea! parameters [2]. How-
ever, in applications such as semi-blind channel estimation
one is faced with the estimation of constrained complex pa-
rameters. Using the calculus of complex derivatives as is
often done in signal processing applications, considerable
insight and simplicity can be achieved by working with the
complex vector parameter as a single entity {3, 4]. We thus
present an extension of the result in [2] for the case of con-
strained complex parameters. Its application is illustrated
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in the context of semi-blind channel estimation and also to
OFDM based communication systems.

2. CRB FOR COMPLEX PARAMETERS WITH
CONSTRAINTS

Consider the complex parameter vector ¥ € € 1 Lety £
& + 7 such that the real and imaginary parameter vectors
a8 e R and £ £ [a7,A7]". Assume that the likeli-
hood function of the {possibly complex) observation vector
@ € Q parameterized by £ is s(@; £). Let £ Q — R2%!

=) oam 2 T A 2 . .
be given as £ £ [&1 , ,BT] , where &, f are unbiased esti-

mators of &, ,(_i respectively. In the foregoing analysis, we

dr(@)
dov

dr{&) a
da

define the gradicnt e R'*™ of a scalar function (&)
dr{a) dr{a) dr{a)
day ? das P00 day, |

Let § € C?** be defined as in [1] by § £ EyT,'?H]T.
Suppose now that the [ complex constraints on # are given
as

as a row vector:

h(d) =0, )

i.e. h (8) € C*1. We then construct an extended constraint
set (of possibly redundant constraints) (9) € C2x1 pg

f(é)é[;i((% ] =0.

An important observation from (2) above is that symmet-
ric complex constraints on these parameters are treated as
disjoint. For instance, given the orthogonality of complex
parameter vectors 71,7, i.e. 77 = 0, the symmetric
constraint 7577; = 0 is to be treated as an additional com-
plex constraint and hence £(8) [ﬁ{fﬁg,‘ﬁé{ﬁl]j . The
extension of the constraints is akin to the extension of the

parameter set from 7 to § = [§7, 57 ]T catled for when
()

2

dealing with complex parameters. Let I (9 and
rank (F (f)) = k < 2n. Hence there existsa [ € C2x2n—+
such that I/ forms an orthonormal basis for the nullspace of
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F(@)ie. F(OU = 0. Let p(@; #) be the reparameterized
liketihood s{&; &, 3) of the observed data and define A as

8lns(w E) dlns(w E_)

8 % o5 » 3

where the last equation follows from the definition of p(@; 8).

LetJ=E {A*AT} denote the Fisher information matrix

(FIM) for the unconstramed estimation of 8. Also assume

that

A.1: The real parameter vector £ satisfies the desired regu-
larity conditions as in [2]

We now state the result for the CRB of the constrained
complex estimator £,

Theorem 1. Under assumption A.1 and constraints given
by (1), the CRB for estimation of the constrained parameter
8 € C2*L is then given as

=3 - o o H -
E{(E— 6) (6-9) } >u(Utan)T Ut @)
Proof: A proof of the above result can be found in [3].

3. SEMI-BLIND MIMO CHANNEL ESTIMATION

3.1, Problem Formulation

We consider in this section the problem of pilot assisted
semi-blind estimation of a complex MIMO channel matrix
H < C7** (# reccive antennas = 7,# transmit antennas = ).
Let a total of L pilot symbols be transmitted. The channel
input-output relation is represented as

Yk:ka‘l'Vk 9 k:1,27...,L, (5)

where y;, € €™, x;, € C'*! are the reccived and trans-

mitted signal vectors at the k-th time instant. v, € C™*!

is spatio-temporally uncorrelated Gaussian noise such that
E{viv{} = 021. The received symbol vectors can be
stacked as Yp £ [¥1,¥2.....¥L]. Let X, be defined anal-
ogously by stacking the transmitted symbol vectors. The
next result then relates the estimation accuracy of H to the
number of un-constrained parameters in it.

Theorem 2. Under conditions described above, if the pilot
sequence Xy, is orthogonal i.e. Xp X = o2L1, the mini-
mum estimation error in H is directly proportional to A the
number of un-constrained parameters required to describe
H and in fact,

sfli-l}o s o

Proof: A proof of the above result can be found in [6].

A general complex channel matrix H has Ay = 2rt
parameters.However, H can be factorized using its singular
value decomposition (SVD) as H = PEQM where P ¢
Cr=t, @ € C'** is unitary such that Q7 Q = QQH =1,
Y = diag(o1,02,...,0:), a; > 0. P,¥ can be estimated
using blind techniques. We then employ the pilot data ex-
clusively to estimate the constrained orthogonal matrix ¢
which has Aq = ¢* parameters. The semi-blind estimate
of H is then given as H = PZQH More about the sig-
nificance of such an estimation scheme can be found in [7].
Hence by an application of theorem(2), the ratio of the esti-
mation error bounds of the semi-blind technique which esti-
mates a constrained matrix {, to a training based technique
that estimates the un-constrained H matrix is given as

Ax
G = 10log,, (AQ) dB = 10 logyy (2' ) dB. (7)

The above expression holds with equality when the CRB
is achievable. Thus, for a size 8 x 4 channel matrix, G =
6 dB which implies a significant improvement in estimation
accuracy.

3.2. Cramer-Rao Bound

Let ¥ = PPy, v = P7v,. Denote by q; the i-th col-
umn of the matrix @. The unconstrained input-output rela-
tion for each q; can be written as

Vii= Uixfch' + Vi i, (8)

where y,. ; denotes the i-th element of y;. and analogously
for vy ;. Deﬁne the desired parameter vector to be esti-

mated § £ [vec Q),vec(Q*)]T. It is shown in [5] that
for the above problem the matrices F (§) € C* ¥ U
C2°%t" can be written explicitly and are given as

fglf 0 0 ... of 0 0o ... ]
0 qff 0 g 0 0
af 0 0 0 qF 0
F@)=|0 a 0 0 qf 0
o0 0 0 0 o
Q3 . qi
0 0 qf a 0 0
[ a 0 qQ: 0 a3 i
0 q1 0 g2 0O
0 0 0 0 0
1 . :
U:_ .* * :
V2| -4t —a5 0 0 O
0 0 —qi g5 O
0 0 0 0 -q
) . ) ]




The simplistic and insightful nature of the above matrices
in terms of the orthogonal parameter vectors is particularly
appealing and illustrates the efficacy of using the complex
CRB. From Eq(8) and using the results for least-squares es-
timation [3] the Fisher information matrix J (#) € cot xa
for the unconstrained case is given by the block diagonal
matrix
J(9) = gi:,lg)<2 @' ® X, X1 9
- T
The complex constrained CRB for the parameter vector § is
then obtained by substituting these matrices in (4). For an
orthonormal pilot sequence X, (ie. X, X7 = Loll) the

CRB matrix for @ (and hence that of ﬁ) can be explicitly -

written and the lower bound for the variance in the estimate
of the &, [-th element of £ is shown in [6] to be given as

o[- i) > 2

where Fyy, Qy; are the k,é-th and [, j-th elements of P, Q)
respectively.

|PLzQ13

2 1

(10

3.3. ML Estimation of )

0, the ML estimate of (2, is given as a solution to the cost
function

”

Q) = arg 111111

Y

XHQEI subject to QY =1,
(1

where the norm [|-|| is the matrix Frobenius norm. From [7,

8, 9], the conslrained estimate ¢ employing an orthonormal

pilot sequence X, i.e. Xp X[ = o2L 1, is given as

Q = P,RY where P,X, R = svd (Xpl;pHE) , (12)

and I-:{sb the semi-blind estimate of H is given as
Hyp = PEQH. {13)

Denoting by Xg the Moore-Penrose pseudo-inverse of X, ,
the exclusive training based ML estimate of H is given as

=Y, X]. (14)

3.4. Simulation Results

Our simulation set-up consists of an 8 x 4 MIMO channel

H. The source symbol vectors x € C**! are assumed to be -

drawn from a BPSK constellation and the orthonormality
condition is achieved by using the Hadamard structure. The
transmitted pilot was assumed to be of length L = 12 sym-
bols. Fig.1. shows the total MSE in estimnation of A using
the semi-blind estimate in (13) and the exclusive training
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MSE Vs CRLB For Estimation of H of size 8 X 4
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Fig. 1. Computed MSE Vs SNR. ”H - HHF

based least squares estimate given in (14). Also shown is the
CRB of the semi-blind estimate computed from (10). The
semi-blind ML estimate I:ISE, can be seen to achicve a per-
formance close to the CRB and it is also seen to be (G =)6
dB more efficient than the exclusive training based estimate
I:I,g, as can be inferred from (7).

4. OFDM CHANNEL ESTIMATION

We demonstraic another application of constrained estima-
tion by considering a problem that arises in the context of
channel! estimation in Orthogonal frequency division multi-
plexing (OFDM) communication systems. The problem of
time vs frequency domain channel estimation for an OFDM
based communication system has been detailed in [10, 11].
It has been shown there in that when the number of subcarri-
ers K exceeds the numbers of taps £ in the channel impulse
response (CIR), the time domain least squares channel es-
timate (TLSE) is more accurate than the frequency domain
least squares estimate (FLSE). Indeed, we demonstrate be-
low that this result follows as an immediate consequence of
the complex constrained CRB theory developed above.

4.1, Problem Description

Employing notation in [10], let the complex baseband chan-
nel from the transmitter to the receiver be modelled by a
tapped delay line as

)8 (r —IT), (15)

)= S



where L is the number of taps in the channel and is known.
Let K denote the number of subcarriers and p £ [ag, ay, . .
aK*I]T be the pilot signal known at the receiver. Denot-
ing the discrete time CIR as h = [hg, Ay, .. .,hL_l]T, the
cyclic-prefix extended OFDM communication system can
be modeled as

=ah+n (16)

where r,n € CK*! are the received symbol vector and
additive white Gaussian noise respectively. The matrix ¢ €
CHE*L s constructed from the pilot symbols as

[ a0  ax-1 ak_2 AK-L+1 |
a; 2] G —1 QK —_L42
a2 (17)
ar-1 Qap-2 4r-3 ag
| ak—1 OK-2 GK_3 ax-L |
h, the LS estimate of / is given as
“ -1
h=(aa)” a'r. (18)

The frequency domain equivalent of the system in (16) can
be obtained by computing the DFT of both sides as

R = Fr = Fah + Fn, 1))
where F' € CF*% is given as
WOO‘ WOK-1)
F= : : (20)
W =10 WR—1)(K-1)

and Wi £ ¢=3*%* The system in (19) is then given as

R = AH + N, (21}

where A £ diag (Fp) € CX*¥ N 2 Fnand H £ Fh

where F is the left K’ x L sub-matrix of F. The uncon-

straincd lcast squares estimate H, which is also the FLSE,
is therefore given as

A= (47 4) " AP R, 22)

However, the parameter vector H is a constrained parame-

ter vector and in fact, the constraints on H are given as

f(H)2 FPAH =0 (23)

where F is the right K x {K — L) sub-matrix of F'. There-

fore, from (23), it can be seen that the number of constraints

on H is K — L. Hence, even though H contains K com-
plex parameters (2K real parameters), it only contains L

-?
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(< K) un-constrained complex parameters (2L real param-
eters) and these un-constrained parameters are in fact the
elements of the parameter vector h. H is given as a func-
tion of its un-constrained parameters as H = F'h. Thus, an
alternative constrained technique to estimate H, based on
the estimate in (18) is given as,

H, = Fh, (24)
which is also the TLSE of H. Assuming a constant power
spectrum as in [10}, A¥ A = 1. Hence, the pilot orthogo-
nality requirement of theorem 2 is satisfied and in fact, the
CRB is exactly achievabie since the estimation problem in
this case involves a linear least squares cost function and the
noise is Gaussian [3]. Therefore, from theorem 2, the ratio
of the estimation error of the FLSE in (22) to the estimation
error in the TLSE in (24) is precisely given by the ratio of
the number of parameters to the number of un-constrained

parameters as
R 2
ofla-#l} &

E{L Tk

2y T
fl

as reported in [10], where the above conclusion was reached
after an explicit computation of the covariance matrices of
the time domain and frequency domain estimation schemes.
Thus, the constrained parameter framework and particularly
theorem 2 provides a powerful framework, where results
such as the onc in (25) can be deduced by just reckoning
the number of un-constrained parameters, thus avoiding ex-
plicit computation of the error covariance matrices.

(25)
0 -H

4,2, Simulation results

Our simulation setup consisted of an OFDM system with
K = 40 subcarriers and L = 5 taps. The channel h was
generated as a complex Gaussian vector of zero mean inde-
pendent entries and with the variance of real and imaginary
parts equal t0 0.5. The time domain and frequency domain
channel estimates were found as given in (24) and (22) re-
spectively. The experiment was repeated for 1000 iterations
at different SNRs in the range 2 — 14 dB. The mean estima-
tion error vs SNR is given in Fig.2. It can be seen the the
time domain estimate is more accurate than the frequency
domain estimate. Also, the ratio of the estimation error of
the FLSE to TLSE is precisely 10log,, (%) = 6dB.

5. CONCLUSIONS

An expression for the Cramer-Rao lower bound on the co-
variance of unbiased estimators of a constrained complex
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Fig. 2. Constrained Vs. unconstrained channel estimation
for OFDM.

parameter vector has been presented. Employing this re-
sult, we have demonstrated that the channel estimation er-
ror lower bound is directly proportional to the number of
unconstrained parameters in A, the channel matrix. The
applicubility of this framework is shown in the context of
two different wireless channel estimation problems. The
first scenario is whitening-rotation hased semi-blind MIMO
channel estimation and the second pertains to time versus
frequency domain channel estimation in OFDM systems.
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