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ABSTRACT

We propose and study algorithms for constrained maximum-
likelihood (ML) estimation of a unitary matrix in the con-
text of semi-blind Multi-Input Multi-Output (MIMO) chan-
nel estimation. The flat-fading » x ¢t MIMO channel ma-
trix H for r > t can be decomposed as the matrix product
H = WQH, where W is a whitening matrix and Q is a
unitary rotation matrix. Exclusive estimation of @) from pi-
lot symbols has been shown to potentially achieve a 3 dB or
greater improvement in terms of channel estimation accu-
racy. We develop and present the OPML, IGML and ROML
algorithms for the constrained estimation of the unitary ma-
trix ) that are appropriate for a variety of scenarios, e.g.
orthogonal pilots, low complexity etc. Simulation results
are provided to demonstrate the efficacy of the algorithms.
Key Words: MIMO, ML, Constrained ML, Unitary, Semi-
blind, Channel Estimation.

1. INTRODUCTION

MIMO and smart antenna systems are widely being studied
for employment in current and upcoming wireless commu-
nication systems. Smart antenna systems, which are built
with multiple antennas on receive or transmit side, offer a
variety of gains such as improved SNR due to diversity of
reception or transmission and also enhanced signal quality
from interference suppression. In addition to these, MIMO
systems also provide the additional advantage of increased
data communication rates for the same SNR by using the
multiple spatial multiplexing modes available for commu-
nication.

As the number of data channels increases in MIMO sys-
tems, the number of associated training streams for the esti-
mation of the channel coefficients increases proportionately
which results in reduced spectral efficiency. Moreover, such
pilot based techniques tend not to use the statistical informa-
tion available in unknown data symbols to improve chan-
nel estimates. The MIMO channel estimation problem is
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further complicated because, as the diversity of the MIMO
system increases, the SNR (per bit) required to achieve the
same system performance (in terms of BER) decreases. The
SNR at each antenna is even lower. For instance, employ-
ing binary orthogonal FSK modulation and at an operation
BER of 2 x 1073, while an SNR of 25 dB is required with
a single receive antenna, an SNR of 12dB suffices with 4
antennas [1]. Such low SNR environments call for robust
channel estimation techniques which use both training and
blind data completely.

Semi-blind techniques can potentially enhance the qual-
ity of such estimates by making a more complete use of
available data. Overhead costs can be reduced by achiev-
ing pilot based estimation quality for smaller training sym-
bol pay loads. With a few known training symbols along
with blind statistical information, such techniques can avoid
the convergence problems associated with completely blind
techniques. Early research on semi-blind techniques has
been reported in [2]. Extensive work has been done later
by Slock et. al. [3], [4] where several semi-blind techniques
have been reported.

We utilize the fact that the » x ¢ MIMO channel matrix
H for r > t can be decomposed as the product H = WQ*H,
where W is a whitening matrix and () is unitary such that
QQH = 1. Tt is well known that W can be computed
blind from the second order statistics of received output
data. Training data can then be utilized to estimate only the
unitary matrix (). Significant estimation gains can then be
achieved by estimation of such orthogonal matrices which
are parameterized by a much fewer number of parameters.
However, since () is a unitary constrained matrix, optimal
estimation of () necessitates the construction of constrained
estimators. Such an estimator can be found in [4] for an or-
thogonal pilot sequence. We refer to this as the OPML es-
timator and examine its properties. Another salient feature
of this work is the development of a novel IGML algorithm
for the constrained estimation of () employing any (not nec-
essarily orthogonal) pilot sequence. Finally we present the
ROML algorithm for low complexity implementation of a
constrained estimator. Simulation results are presented that
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demonstrate the usefulness of the algorithms developed.

2. PROBLEM FORMULATION

Consider a flat-fading MIMO channel matrix H € C"**
where t is the number of transmit antennas and r is the num-
ber of receive antennas in the system, and each h;; repre-
sents the flat-fading channel coefficient between the it" re-
ceiver and ;" transmitter. Denoting the complex received
data by y € C"*1, the equivalent base-band system can be
modelled as

y(k) = Hx(k) + n(k), )

where k represents the time instant, x € C**! is the com-
plex transmitted symbol vector. 7 is additive white Gaussian
noise such that E {n(k)n(l)} = d(k,1)o21 where §(k,l) =
1if k = [ and 0 otherwise. Also, the sources are assumed
to be spatially and temporally independent with identical
source power o2 i.e. E{x(k)x(l)} = §(k,1)o2I. The sig-
na21 to noise ratio (SN R) of operation is defined as SN R £

o

>5. Assume that the channel has been used for a total of
N symbol transmissions. Out of these N transmissions, the
initial L symbols are known training symbols and the ob-
served outputs are thus training outputs. Let X, € Ctxk
be defined as X, = [x(1),x(2),...,x(L)], by stacking the
training symbols. Y, € C"* is given by similarly stack-
ing the received training outputs. The remaining N — L
information symbols transmitted are termed as ’blind sym-
bols’ and their corresponding outputs as ’blind outputs’.
Xy, € CXN=Ly, € C"™*N =L can be defined analogously
for the blind symbols. {[X,,Y,],Y,} is the complete avail-
able data.

3. ESTIMATION STRATEGIES

3.1. Training Based Estimation

H can be estimated exclusively using the pilot X, given as

Hrs =Y, X}, 2)

where X ; denotes the Moore-Penrose pseudo-inverse of X,.

This qualifies as training based estimation and is simple to
implement. However, it results in poor usage of available
bandwidth since the pilot itself conveys no source informa-
tion.

3.2. Semi-Blind Estimation

Now consider a MIMO channel H € C"** which has at
least as many receive antennas as transmit antennas i.e. v >
t. Then, the channel matrix H can be decomposed as H =
WQH where W € C™*! is also known as the *whitening’
matrix and Q € C'*?, termed as the ’rotation’ matrix, is
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unitary i.e. Q7Q = QQF = I. As shown in [5], the matrix
W can be estimated from the received data Y} alone. We
therefore employ the pilot information {X,,,Y,} to exclu-
sively estimate the rotation matrix ¢). This semi-blind esti-
mation procedure is termed as a Whitening-Rotation (WR)
scheme. Let the SVD of H be given as PX Q. A possible
choice for W is given by W = P¥ and we assume this spe-
cific choice in the rest of the work. We present next a list of
potential assumptions which are employed as appropriate in
subsequent parts of the work.

A.1 W € C"*! is perfectly known at the output.
A2 X, € C" s orthogonal i.e. X, X1 = 02L 1.

A.1 is reasonable if we assume the transmission of a
long data stream (N — oo) from which W can be es-
timated with considerable accuracy and A.2 can be easily
achieved by using a an integer orthogonal structure such as
the Hadamard matrix.

The WR technique potentially improves estimation ac-
curacy because the matrix () by virtue of its unitary con-
straint is parameterized by a fewer number of parameters
and hence can be determined with greater accuracy from
the limited pilot data X,,Y},. Indeed, it has been shown
in [6],[7] that under A.1 and A.2, the gain of the semi-
blind algorithm (in dB) in terms of MSE of estimation is
101logy (%°). Thus for a size 8 x 4 complex channel ma-
trix H, i.e. H € C®*% the estimation gain of the semi-
blind technique is 6 dB which represents a significant im-
provement over the conventional technique described in (2).
However, estimation of the unitary constrained matrix () ne-
cessitates the development of constrained algorithms which
are presented in the next section.

4. ALGORITHMS

4.1. Orthogonal Pilot ML (OPML) estimator

Q : C"*L — S, where Q is the constrained ML estimator
of @ and S is the manifold of unitary matrices, is obtained
by minimizing the likelihood

[V, —WQ¥X,|” suchthat QQ¥ =1 (3

Let M & WH YpXIfI . We then have the following result
for the constrained estimation of Q.

Lemma 1. Under A.1 and A.2, Q the constrained OPML
estimate of Q) that minimizes the cost function in (3) is given

by
Q:VMUﬁwhere, UmEMViE =SVD(M). @)

Proof. This technique has been proposed and proved in [4].
O
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Since this procedure employs A.2 (orthogonal pilot), it
is termed as the OPML estimate. The above expression (4)
thus yields a closed form expression for the computation of
@, the ML estimate of Q. The channel matrix H is then
estimated as H = WQH.

4.1.1. Properties of the OPML Estimator:

In this section we discuss properties of the OPML estima-
tor. We show that the estimator is biased and hence does
not achieve the CRB for finite sample length. However,
from the properties of ML estimators, it achieves the CRB
asymptotically as the sample length increases. Further, it is
also shown in this section that the bound is achieved for all
sample lengths at high SNR .

P.1 There does not exist a finite length constrained unbi-
ased estimator of the rotation matrix () and hence @,
the OPML estimator of () is biased.

Proof. Let there exist Q such that Q : C"™*L — &
is a constrained unbiased estimator of Q. C™*! is
the observation space (Y;) and S is the manifold of
orthogonal matrices. Then Q = @ + E where E is
such that E {E} = 0. Now since Q is a constrained

estimator we have QQH = I and therefore,

Q+E)" (Q+E) =1,

which when simplified using the fact that QQY = I
yields
Q"E+E"Q+EE" =o0.

Rearranging terms in the above expression and taking
the expectation of quantities on both sides (where the
expectation is with respect to the distribution of E
conditioned on () yields

tr (QTE{E} +E{E}" Q) = —u (B{||E]’}).

®)
It can immediately be observed that the right hand
side is strictly less than O while the left hand side is
equal to zero (by virtue of E {E} = 0) and hence the
contradiction. O

The above result then implies that the CRB cannot
be achieved in a general scenario as there does not
exist an unbiased estimator which is necessary for
the achievement of the CRB. However, the properties
presented next guarantee the asymptotic achievability
of the CRB both in sample length and SNR.

P2 The OPML estimator achieves the CRB as the pilot
sequence length L — oo.
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Proof. Follows from the asymptotic property of ML
estimators, reviewed in [8]. O

P.3 The OPML estimator of () achieves the CRB at high

2
SNR, i.e. as 25 — oo.
o

n

Proof. The above result can be proved using the the-
ory of matrix eigenspace perturbation analysis detailed
in [9]. A complete proof can be found in [7]. O

4.2. Iterative ML procedure for general pilot - IGML

In this section we present the IGML algorithm to compute
the estimate for any given pilot sequence X, i.e. when A.2
does not necessarily hold. As it is shown later, the proposed
IGML scheme reduces to the OPML under A.2. The ML
cost-function to be minimized is given as in (3). Let A.1
hold true and Yp £ pH Y),. The Lagrange cost to be mini-
mized can then be formulated as

-

- 2 ¢
i=1

=1

+§t: i Re {15 (CI}H%)}

i=1 j=i+1

where \; € R, ju;; € C are the Lagrange multipliers, Y, (i) €
C™ L is the i-th row (output at the i-th receiver) and q; is
the i-th column of @ for 1 < 7,5 < ¢. Define the ma-
trix of Lagrange multipliers S € C*** as S;; £ \;, Sij £
wij/2ifi < jand S;; = w;;/2 if i > j. Observe that
S is a hermitian symmetric matrix, i.e. S = SH_ The
above cost function can now be differentiated with respect
to Re{q;},Im{q;} for 1 < i < t. These quantities can
then be equated to O for extrema and after some manipula-
tion, the resulting equations can be represented in terms of
complex matrices as

XY P8 - X, xFQ? = QS, (6)

where () is unitary. We avoid repeated mention of this con-
straint in the foregoing analysis and it is implicitly assumed
to hold. Let 4 £ X, YA¥ = X, YHW. After some ma-
nipulations, the resulting equation can be written as

QT =T1Q.

where 7 £ A+ (L 02Ty — XpXZfI) QX2. Thus from the
above equation, Q7 is hermitian symmetric or in other
words QT = THQ. Also, if UrA7VE = SVD (7)
then, QUr A7 VE = SVD (Q”T). We have then from
the symmetry of Q¥ T,

QMUr =Vr = Q =UsVE. (7
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(7) gives the critical step in the iterative algorithm which is
succinctly presented below. Some of the definitions above
are repeated for the sake of completeness.

IGML Algorithm: Let A.1 hold, i.e. W =W = Px. Xp
is the transmitted pilot symbol sequence and not nec-
essarily orthogonal. We then compute the constrained
ML estimate of Q) as follows.

S.1 Compute A = X,Y,)W, where Y, is the received
output data.

S.2 Let Q, denote the initial estimate of the unitary
matrix (). Compute Qo by employing X,,, W and
Y, in (4). Let B£ (Lo? 1, — X, XH).

S.3 Repeat for \ iterations. At the k" iterationi.e.1 <
k<N,

S.3.1 Compute T;; = A + BQj_1 %2
S.3.2 Compute refined estimate of Q;, from 7;,
by employing (7).

S.4 Compute the estimate of H as H = WQF.

N, the number of iterations is small and typically N/ <
5 as found in our simulations. It can now also be noticed
that if A.2 holds, Xpr = Lo%1. Therefore, 7 = A =
XprHW. The SVD of 7T is then given by Ur A7V =
VmZmU /I\{/l It follows that the IGML solution given as

Q=UrVH# = VUL, (8)

is similar to the solution given in (4). Thus, when X, is
orthogonal, the IGML algorithm converges in a single iter-
ation to the OPML solution.

4.2.1. ’Rotation-Optimization’ ML (ROML)

The above suggested IGML scheme to compute Q for a gen-
eral pilot sequence X, might be computationally complex
owing to the SVD computations involved. Thus, to avoid
the complexity involved in the full computation of the opti-
mal ML solution, we propose a simplistic ROML procedure
for the sub-optimal estimation of @, thus trading complexity
for optimality. The first step of ROML involves construction
of a modified cost function as

- 2
mén HWYP — QHXPH where QQY =1. (9)

Y, = WY}, is the whitening pre-equalized data. Several
choices can then be considered for the pre-equalization filter

IEEE Communications Society

Globecom 2004 2478

W. The standard Zero-Forcing (ZF) equalizer is given by
Wyr = WT (where 1 denotes the Moore-Penrose pseudo-
inverse). Alternatively, a robust MMSE pre-filter is given as
Wanse = olWwH (a?WWH + U%I)_l. Defining D £
WYPX;I , the cost minimizing @ for the modified cost in
(9) is given as

Q = VpUY where UpSpVL =SVD (D).  (10)

This result for problem (9) follows by noting its similar-
ity to problem (3). However, the resulting estimate does
not have any statistical optimality properties as it does not
compute the solution to the true cost function given in (3).
This estimate of @ can now be employed to initialize the
IGML procedure to minimize the true cost. However, to
avoid the complexity associated with an SVD computation,
a constrained minimization procedure (ex: *fmincon’ in
MATLAB) can now employed to converge to the solution
with the 2 non-linear constraints given by the unit norm
and mutual orthogonality of the rows of ). This procedure
then yields @ which is close to the optimal ML estimate and
the low computational cost of the proposed solution makes
it attractive to implement in practical systems.

5. SIMULATION RESULTS

Our simulation set-up consists of a 8 x 4 MIMO channel
H (ie. » = 8,t = 4). H was generated as a matrix of
zero-mean circularly symmetric complex Gaussian random
entries such that the sum variance of the real and imagi-
nary parts was unity. Orthogonal pilot sequences are con-
structed using the Hadamard structure. For a general pilot
sequence and data vectors, symbols were drawn from a 16-
QAM signal constellation. Noise vectors 7(k) were gen-
erated as spatio-temporally uncorrelated complex Gaussian
random vectors and with variance of each element equal to
o2,

Experiment 1: We evaluate the MSE performance of the
different constrained ML estimators of () under A.l1 and
compare it to the training based estimate given by (2). A sta-
tistically white pilot (E {Xpr } = LO’EI) was employed
for the IGML, ROML and training based schemes while
an orthogonal pilot X, was used for the OPML scheme
with X, X = LoZ2I, thus maintaining constant source
power. The MSE of estimation of the channel matrix H
has been computed for different pilot lengths L in the range
20 < L < 100. Figure 1 shows the error for these differ-
ent schemes and also that for the exclusive training based
scheme. It can be seen that the semi-blind schemes are 6dB
more efficient than the training scheme.

Experiment 2: Finally, we consider P, qf detection of the
transmitted symbol vectors employing H estimated from
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Fig. 1. Computed MSE Vs SNR.

different schemes. We compare OPML at the receiver vs the
training based estimate of H for a pilot sequence of length
L = 12 symbols. Figure (5) shows the probability of error
detection vs SNR for a linear MMSE receiver at the output
for both a 8 x 4 and 12 x 4 system H. It can be seen that at
an SNR of 6 dB the semi-blind schemes achieves about a 1
dB improvement in probability of bit error detection perfor-
mance over the exclusive training based estimate.

6. CONCLUSIONS

We have presented algorithms for constrained ML estima-
tion of a unitary matrix in the context of semi-blind MIMO
channel estimation. Properties of the OPML algorithm for
the constrained ML estimation of ) were examined. The
IGML has been presented for the estimation of ) from a
general pilot sequence X, and the ROML as a low com-
plexity alternative.
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