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ABSTRACT

We study two competing pilot symbol based schemes, viz.
superimposed pilots (SP) and conventional pilots (CP) for
the estimation of a single-input multiple-output (SIMO) wire-
less channel. We derive expressions for the mean-squared
error (MSE) and Cramer-Rao bound (CRB) of estimation
of the SIMO channel. It is demonstrated that the asymp-
totic CRB of SP is 3dB lower than the MSE of the sim-
plistic mean estimator. We propose a semi-blind SP scheme
which asymptotically achieves this CRB. In the second part,
we quantify the throughput performance of the estimation
schemes by developing a framework for the worst case ca-
pacity of a channel with correlated symbols and noise. It is
observed that while CP outperforms SP in terms of MSE of
estimation, SP has an overall advantage over CP in terms of
net throughput and is therefore bandwidth efficient. Further,
we derive expressions for the optimal source to noise power
ratio (SNR) as a function of the pilot to noise power ratio
(PNR) in the context of SP.

1. INTRODUCTION

Several advances have been made towards enhanced signal
processing for SIMO (Single-Input Multiple-Output) and
MIMO (Multiple-Input Multiple-Output) wireless systems.
Availability of accurate channel knowledge in such systems
can result in significant performance improvements. Tradi-
tionally, the channel has been estimated by the transmission
of a known sequence of pilot symbols prior to transmit-
ting information bearing data symbols in each estimation
period. This scheme is termed as conventional pilot (CP).
A major concern in this endeavor is the potential wastage of
bandwidth due to the exclusive transmission of pilot sym-
bols which bear no information. Recent advances in signal
processing have suggested an innovative scheme for chan-
nel estimation using superimposed pilot (SP) symbols. SP
based schemes trade off bandwidth for power and the ad-
ditional power is used to transmit a repetitive sequence of
pilot symbols superimposed over the data symbols. Hence,
SP schemes do not sacrifice bandwidth by exclusively trans-
mitting pilots. Schemes for SP based estimation have been
explored in [1, 2, 3].
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In this work, we derive expressions for the mean-square
error (MSE) of estimation of the SP and CP schemes. Fur-
ther, employing Gaussian transmitted symbols, we derive
the true Cramer-Rao Bound (CRB) for SP based estima-
tion, where only approximate bounds exist in literature[1].
The simplistic first-order statistic (mean) based estimation
scheme proposed in works such as [1, 2] ignores the in-
formation present in the second-order statistics. We pro-
pose a semi-blind SP estimation scheme which employs this
second-order statistical information to enhance estimation
accuracy. This estimate is demonstrated to have an asymp-
totic MSE that is 3dB lower than the mean based estimate.
Another aspect of this work is the framework for throughput
performance analysis. A similar study has been presented
in [4]. In our work we derive a general expression for the
capacity lower bound of correlated channels to analyze the
throughput performance of SP and CP systems with estima-
tion error. It is seen from this study that even though CP
outperforms SP with respect to MSE of estimation, SP can
outperform CP in terms of overall system throughput and
hence is more suited for communication purposes. Further,
we addresses the issue of optimal source power control in a
system employing SP. We present closed form expressions
for the optimum SNR to maximize post-processing SNR
(PSNR) for different receive beamformers. Due to space
limitations, some proofs will be omitted and they can be
found in [5].

2. CP AND SP ESTIMATION: STATIC CHANNEL

Consider a single-input multiple-output (SIMO) wireless sys-
tem with r receive antennas. Let the vector of complex fad-
ing coefficients h � [h1, h2, . . . , hr]

T ∈ C
r×1 denote the

SIMO channel. The equivalent discrete-time baseband sys-
tem model after matched filtering is given as,

y(k) = hx(k) + η(k), 1 ≤ k ≤ Nb (1)

where the index k denotes the time instant and y(k) ∈
C

r×1, x(k) ∈ C denote the kth received symbol vector and
transmitted symbol respectively. The quantity Nb denotes
the block length and the vector η(k) ∈ C

r×1 is spatio-
temporally uncorrelated additive white Gaussian noise of
power σ2

n, i.e. E
{
η(k)η(l)H

}
= σ2

n δ(k − l)Ir, where
δ(k) = 1 if k = 0 and 0 otherwise. Let Xp ∈ C

1×Lp
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Figure 1: Superimposed pilots frame (block) structure.

defined as, Xp � [xp(1), xp(2), . . . , xp(Lp)], be a length
Lp symbol pilot sequence of power Pt, i.e. XpX

H
p = PtLp.

The transmitted data symbols denoted as xd(k) are assumed
to be stochastic in nature with E {xd(k)} = 0 and power
Pd = E

{
|xd(k)|2

}
. Also, let ρd �

(
Pd/σ2

n

)
and ρt �(

Pt/σ2
n

)
be the signal-to-noise power ratio (SNR) and pilot-

to-noise power ratio (PNR) respectively. Below we describe
the competing schemes for pilot symbol based channel esti-
mation of the wireless channel h.

2.1. Superimposed pilots (SP) based channel estimation

For SP estimation let each frame of contiguous transmit-
ted symbols contain Nf sub-frames of length Lp symbols,
thus making the frame consist of Nb � NfLp symbols.
Let Xs

d � [xs
d(1), xs

d(2), . . . , xs
d (Nb)] ∈ C

1×Nb be the
transmitted information symbol sequence of power P s

d , i.e.
E

{
|xs

d(k)|2
}

= P s
d . Each such sub-frame consists of in-

dependent data symbols with the pilot sequence Xp of Lp

symbols superimposed over the data symbols, i.e. xs
p(k) =

xp (mod(k, Lp) + 1). A schematic diagram of this SP frame
structure is given in fig. 1. The actual transmitted symbol
at the kth instant, xs(k), is therefore given as xs(k) �
xs

d(k) + xs
p(k). The SP system model can be denoted as,

ys(k) = h (xd(k) + xp (mod(k, Lp) + 1))︸ ︷︷ ︸
xs(k)

+η(k), (2)

where ys(k), xs(k) are the kth received symbol vector and
transmitted symbol respectively. We employ a scheme sim-
ilar to the ones suggested in [1, 6] to estimate the chan-
nel vector h, which is described as follows. Let ȳs(k) ∈
C

r×1, 1 ≤ k ≤ Lp be, ȳs(k) � 1
Nf

∑Nf−1
j=0 ys (k + jLp).

Let Ȳ s ∈ C
r×Lp � [ȳs(1), ȳs(2), . . . , ȳs(Lp)], be a stack-

ing of the received symbol vectors. Statistically E
{
Ȳ s

}
=

hXp. The channel estimate ĥs is now computed by the stan-
dard least squares procedure as,

ĥs = ȲsX
†
p = ȲsX

H
p

(
XpX

H
p

)−1
. (3)

where † denotes the pseudo-inverse. We refer to the above
estimate as themean-estimate for superimposed pilots. This

scheme has the advantage of depending only on the first or-
der statistics (mean of received signal ys(k)) and converges
faster (compared to second and higher order statistics based
methods) while having a low complexity of implementation.
The estimate ĥs is then used for detection of the transmitted
data xs

d(k) after subtracting the superimposed pilot symbol.

2.2. Conventional Pilots (CP) based estimation

The CP symbol frame consists of a transmission of one sub-
frame, i.e. Lp pilot symbols followed by (Nf − 1) Lp in-
formation bearing data symbols. To transmit equal total
power as in SP, we scale the CP pilot and data powers as
P c

t = P s
t Nf , P c

d = P s
d /

(
1 − 1

Nf

)
. Thus, the CP pi-

lot symbol matrix Xc
p is given as Xc

p =
√

NfXp. The
input-output model for the CP system is given as, yc(k) =
hxc(k) + η(k), where

xc(k) =

{ √
Nfxs

p(k), k ≤ Lp

xs
d(k)/

√
1 − 1

Nf
, k > Lp

Defining a stacking of the received pilot symbol outputs
as Y c

p � [yc(1),yc(2), . . . ,yc(Lp)], the conventional es-
timate ĥc is then given by the well known LS estimate as,
ĥc = Y c

p

(
Xc

p

)†. In the next section we derive analyti-
cal expressions for the MSE performance of the estimation
schemes presented above.

3. MSE OF ESTIMATION: SP AND CP

The quantity Ȳ s is given as, Ȳ s = hXp +hX̄s
d + N̄ , where

X̄s
d and N̄ are defined analogously for xs

d(k), η(k), 1 ≤ k ≤
Nb. Simplifying the expression for the SP estimate given in
(3), the quantity ĥs can be seen to be given as, ĥs = h +

1
LpP s

t

(
hX̄s

dXH
p + N̄XH

p

)
. Hence, the MSE of the mean-

estimate for SP denoted byMSEs, is given as,

MSEs = E
{∥∥∥ĥs − h

∥∥∥2
}

=
1

NbP s
t

(
‖h‖2

P s
d + rσ2

n

)
.

The error of the CP estimate denoted by MSEc is given
as, MSEc = rσ2

n

NbP s
t
[7]. Thus it can be seen that MSEs >

MSEc, proving that CP is more suited for the estimation of
static channels. Further, it can also be seen that MSEs =
MSE∞

s + o (P s
d ), whereMSE∞

s ∈ O(P s
d ) is the dominant

component of the MSE of the mean-estimate at high SNR
(i.e. P s

d → ∞) and is given as,

MSE∞
s = P s

d

(
lim

P s
d→∞

MSEs

P s
d

)
=

P s
d

NbP s
t

‖h‖2
, (4)

where asMSE∞
c = 0 (defined similarly). HenceMSEs can

be seen to increase progressively increase without bound as
the source power P s

d increases. Thus, increasing P s
d causes

degradation of the estimate ĥs, which can potentially result
in poor detection performance. Next, we derive the Cramer-
Rao Bound (CRB) for SP based estimation.
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R SP CP

Rvs Rs
vs = − (P s

d )2

NbP s
t

(
1 + 1

Nb

)
hhH − σ2

nP s
d

NbP s
t
Ir Rc

vs = − σ2
nP c

d

Nf P c
t
Ir

Rs Rs
s = P s

d

(
1 + P s

d

NbP s
t

)
hhH + σ2

nP s
d

NbP s
t
Ir Rc

s = P c
dhhH + P c

d σ2
n

Nf P c
t
Ir

Rv Rs
v = σ2

nIr + (P s
d + P s

t )
(

P s
d hhH

NbP s
t

+ σ2
nIr

NbP s
t

)
Rc

v = σ2
nIr + σ2

nP c
d

Nf P c
t
Ir

Table 1: Table showing covariance matrices for SP and CP based systems with channel estimation error.

3.1. Cramer-Rao Bound (CRB) for SP Estimation

In this section, we compute the complex CRB for the SP
based estimation ofh. We assume a Gaussian symbol source
i.e. xs

d(k) ∼ N (0, P s
d ). As suggested in [8] for the con-

struction of CRBs for complex parameters, let the complex
parameter vector θ̄ ∈ C

2r×1 be constructed by stacking the
parameter vector h and its conjugate as θ̄ =

[
hT ,hH

]T .
From the SP system model for pilot symbol outputs given in
(2), the parameter dependent log-likelihood L (

Y s|Xs
p ; θ̄

)
(log-likelihood ignoring additive constants) for the estima-
tion of the parameter vector θ̄ is given as,

−Nb ln |Re|−
Nb∑
i=1

(
ys(i) − hxs

p(i)
)H

R−1
e

(
ys(i) − hxs

p(i)
)

where Y s � [ys(1),ys(2), . . . ,ys (Nb)] and Re, the co-
variance of this effective noise is given asRe � P s

dhhH +
σ2

nIr. The Cramer-Rao Bound (CRB) for the estimation of
θ̄ is given by the matrix J−1

θ̄
, where Jθ̄ ∈ C

2r×2r is the
complex Fisher information matrix (FIM) for the parameter
vector θ̄ ∈ C

2r×1 and is given as Jθ̄ = Jp

θ̄
+ Jr

θ̄
where the

Pilot FIM (PFIM) component Jp

θ̄
of the total FIM Jθ̄ is,

Jp

θ̄
= (NbP

s
t )

[ (
R−1

e

)T
0

0 R−1
e

]
.

and the FIM component Jr
θ̄
, which corresponds to the infor-

mation in the covariance matrixRe, is given as

Jr
θ̄ =

Nb (P s
d )2

σ2
n + P s

d ‖h‖2

⎡
⎣ ‖h‖2 (

R−1
e

)T h∗hH

σ2
n+P s

d ‖h‖2

hhT

σ2
n+P s

d ‖h‖2 ‖h‖2 R−1
e

⎤
⎦ .

The expressions for the FIM components Jp

θ̄
, Jr

θ̄
can be

employed to obtain the true FIM Jθ̄ and the MSE bound
MSEb = 1

2 tr
(
J−1

θ̄

)
. The result below yields a critical in-

sight into the relation between this MSE bound MSEb and
the quantitiesMSEs, MSEc.

Theorem 1. The MSE bound for SP based estimation is
given asMSEb = MSE∞

b +o (Ps
d)whereMSE∞

b ∈ O(P s
d )

is the dominant component of the MSE bound at high SNR
(P s

d → ∞) and is given as,

MSE∞
b = P s

d

(
lim

P s
d→∞

MSEb

P s
d

)
=

1
2

(
P s

d

NbP s
t

)
‖h‖2

.

(5)

Proof. Given in [5].

The quantity MSE∞
b also increases linearly with Pd as

against MSE∞
c = 0. Hence CP outperforms the best SP

estimate, and therefore every SP estimate, for a reasonably
high SNR. We also have the following result.

Lemma 1. The asymptotic MSE measures for SP based es-
timation, MSE∞

b and MSE∞
s , the asymptotic MSE bound

and the asymptotic MSE of the mean-estimate respectively,
are related as,

MSE∞
b

MSE∞
s

=
1
2
. (6)

Proof. Follows from (4) and (5).

Hence, neglecting the covariance information in Re re-
sults in a 3 dB loss of estimation performance by the mean-
estimator. We now describe a semi-blind scheme that achieves
the CRB. One can estimate h̃ from an eigen decomposition
of Re such that h = h̃ejφ̂b . It can then be demonstrated
that the optimal phase ejφ̂b and the semi-blind estimate ĥb

are,

ĥb = h̃ejφ̂b where φ̂b = −∠
{

tr
(
(Y s)H R−1

e h̃Xs
p

)}
.

The ‘∠’ operator above yields the angle or phase of the com-
plex scalar quantity. This is akin to the whitening-rotation
semi-blind procedure elaborated in [8] and achieves theMSE
lower bound in (5) at high SNR.

4. THROUGHPUT COMPARISON

One of the promising aspects of SP based estimation schemes
is the potential savings in bandwidth due to the transmis-
sion of superimposed data and pilot signals. The result in
[9] provides a succinct expression to characterize the worst
case capacity of a communication channel in the presence
of channel estimation errors. This framework relies on the
central assumption that the channel estimate ĥ and the es-
timation error h − ĥ satisfy the decorrelation property, i.e.

E
{
ĥ

(
h − ĥ

)H
}

= 0r×r, which is satisfied by the mini-

mum mean-squared error (MMSE) estimate. However, this
decorrelation property is not satisfied by the least-squares
(LS) estimator, which is a disadvantage since the LS estima-
tor is robust and has a low computational complexity, which
makes it especially suited for implementation in wireless
systems. Further, this result cannot be used in the context
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Figure 2: MSE of Estimation of h with r = 4 antennas. Nf

= 20, Lp = 8, PNR(ρt) = 5dB.

of SP based estimation since the SP channel estimate ĥs is
correlated with the data symbols xs

d(k) as, E
{
ĥsx

s
d(k)

}
=(

P s
d

NbP s
t

)
hxs

p(mod(k, Lp) + 1). Hence, we present a result
in this section for the worst case capacity Cw of a channel
with non-zero signal-noise correlation.

Lemma 2. Worst case correlated capacity: Let the sys-
tem input-output model of a vector output noisy communi-
cation channel be given as, y(k) = s(k) + v(k), where
s(k),v(k) ∈ C

r×1 represent the signal and the unknown
noise components respectively. Let the covariance matrices
of v(k), s(k) be given by Rs and Rv respectively. Further,
let the correlation between the signal and noise components
be given as, E

{
v(k)s(l)H

}
= δ(k− l)Rvs = δ(k− l)RH

sv

where Rvs is not necessarily 0r×r. For the above commu-
nication system, the worst case capacity Cw defined as,

Cw = min
pv(·), tr(Rv)=rσ2

n

max
ps(·)

I (y; s) ,

is given by the expression,

min
tr(Rv)=rσ2

n

log
∣∣∣I + R−1

v|s (Rs + Rvs)R−1
s (Rs + Rvs)

H
∣∣∣ ,

where the conditional covariance Rv|s ∈ C
r×r is given as

Rv|s � Rv − RvsR−1
s Rsv .

Proof. Given in [5].

We employ Rv = σ2
nI to derive worst case capacities

of the SP and CP estimation schemes. Also, it can be seen
for the case of uncorrelated noise, i.e. Rsv = Rvs = 0r×r,
the expression above reduces to Cw = log

∣∣I + R−1
v Rs

∣∣,
which is the result in [9].

4.1. Worst Case Throughput for SP and CP Estimation:

Let ỹs(k) denote the output of the SP system after removal
of the pilot symbol xp (mod(k, Lp) + 1) employing the es-
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Figure 3: Throughput performance Vs. Nf

timate ĥs. The effective noise vs(k) after pilot removal is
given as,

(
h − ĥs

)
(xs

d(k) + xp (mod(k, Lp) + 1))+η(k),

and ss(k) � ĥsx
s
d(k) denotes the souce component. The

covariance matrices Rs,Rv,Rvs for SP and CP based es-
timation are given in table 1. Substituting the above quan-
tities in the expression for the worst case capacity, one can
obtain the throughput lower bounds for SP and CP systems
in terms of bits per channel use. As illustrated by the sim-
ulation results, for reasonable values of SNR (= Pd/σ2

n),
PNR(= Pt/σ2

n) and number of sub-frames(= Nf ), an SP
scheme has a throughput of approximately 0.5 bits per chan-
nel use greater than that of CP. This is because CP is disad-
vantaged by the loss of one sub-frame of bandwidth due to
the transmission of pilot symbols exclusively, while the es-
timation errors are comparable at low SNRs.

5. ESTIMATION ERROR AND PSNR

It can be seen that ĥs, the estimate of the channel is cor-
rupted by the data symbols xs

d(k) which enhance the noise
during the estimation of the channel. This scenario presents
an interesting tradeoff in SP systems. While on one hand,
higher data power improves the detection performance, it
also results in a poor channel estimate and loss in detection
performance. In fact, for a given number of frames Nf , if
the source power P s

d is too high, the detection performance
tends to be very poor. Motivated by this observation, we
derive expressions for the optimal data SNR ρs

d

(
= P s

d /σ2
n

)
to maximize the post-processing SNR (PSNR) for different
receive beamformers.

5.1. MVDR Beamformer

The Minimum Variance Distortionless Response (MVDR)
beamformerwm is given as a solution to the criterion,wm =
arg minwHRs

vw, subject to,wH ĥs = 1. The vector wm
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is given as, wH
m =

(
ĥH

s (Rs
v)−1 ĥs

)−1

ĥH (Rs
v)−1. Sub-

stituting this above, the expression for the post-processing
SNR of the MVDR beamformer can be seen to be given as,

κm =
P s

d

E
{
|wH

mvs(k)|2
} = P s

d ĥH
s (Rs

v)−1 ĥs. (7)

As demonstrated in [5], the above expression can be sim-
plified by substituting the expression for Rs

v in table 1 to
yield,

κm ≈ ρs
tρ

s
dNb ‖h‖2

(ρs
d + ρs

t ) ρs
d ‖h‖2 + ρs

t (Nb + 1) + ρs
d

, (8)

where ρs
d, ρ

s
t are the data and pilot SNR respectively as de-

fined previously. The optimum ρmvdr
d that maximizes the

above expression for the post-processing SNR κm is given
by the following result.

Lemma 3. The optimum data SNR ρmvdr
d that maximizes

the post-processing SNR κm for the MVDR beamformer is
given as,

ρmvdr
d � Pmvdr

d

σ2
n

=

√
(Nb + 1)
‖h‖2 ρs

t (9)

Proof. Given in [5].

The expression for the transmit SNR that maximizes the
channel SNR and PSNR for the matched filter beamformer
can be obtained similarly [5].

6. SIMULATION RESULTS

We consider CP vs SP based channel estimation of the static
wireless channel h ∈ C

4×1 i.e. r = 4 receive antennas.
The MSE bound from the SP-CRB is also plotted and can
be seen to coincide at high-SNR with the asymptotic ex-
pression given in (5). As stated in lemma 1, it is seen that at
high SNR, the SP MSE bound is 3dB lower than the MSE
of the SP mean-estimate. MSEb, the MSE of the semi-blind
estimate ĥb is plotted as ’semi-blind’ which can be seen to
achieve the asymptotic MSE bound for SP. The MSE of the
conventional estimate is plotted as ’Conv-MSE’ and can be
seen to be the lowest amongst all the curves, thus verify-
ing that CP has the lowest MSE of estimation. In Fig.3.
we plot the throughput variation of the above system for
SP and CP schemes vs. varying SNR. For Lp = 16 sub-
frames and SNR = PNR = 5dB, the SP system throughput
is around 0.5 bits/channel use higher than that of CP. The
throughput performance of the CP increases with SNR as
expected. In Fig.4. we also plot the SER performance as a
function of SNR, and the computed optimal SNR value for
different values of sub-frames Nf , pilot length Lp and pilot
to noise power ratio (PNR). It can be seen that the theoreti-
cally computed optimal SNR from (9) is fairly accurate for
optimal performance i.e. minimum SER.
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Figure 4: Detection performance vs. SNR of SP based esti-
mation for QPSK signaling, [Nf , Lp, ρt].

7. CONCLUSION

We have compared two competing schemes for pilot based
channel estimation viz. superimposed pilots (SP) and con-
ventional pilots (CP) employing an MSE and throughput
framework. It has been observed that although CP outper-
forms SP in terms of MSE of estimation, SP can have a
higher effective throughput than CP based systems which
leads to a savings in bandwidth in communication systems.
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